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Abstract. In traditional schemes of multilevel multilaser excitation, each laser pulse interacts with only
one pair of states, and the rotating wave approximation (RWA) is applicable. Here we study the population
transfer process in a three-state system when each of the two lasers interacts with each of the pair of states
and when the Rabi frequencies characterizing the interaction strengths of the system are comparable to
or larger than the difference of the transition frequencies. We show that complete and robust population
transfer is possible under conditions more general than those hitherto considered necessary for stimulated
Raman adiabatic passage (STIRAP) or for successive π pulses. Using adiabatic Floquet theory we show
that successful population transfer can be interpreted as adiabatic passage by means of a transfer state
which connects the initial and final states. The Floquet picture offers a convenient interpretation of the
population transfer as accompanied by multiple absorption of photons from or emission into the laser fields.

PACS. 42.50.Hz Strong-field excitation of optical transitions in quantum systems; multi-photon processes;
dynamic Stark shift – 32.80.Wr Other multiphoton processes – 32.80.Bx Level crossing and optical pumping

1 Introduction

The time-varying population changes induced by two laser
fields interacting with a three-state system exhibit a rich
variety of phenomena and processes, such as lasing with-
out inversion [1], laser cooling [2], population transfer [3],
and loss-free pulse propagation [4,5] to name only a few.
Most of the processes can be adequately treated within
the limits imposed by the rotating wave approximation
(RWA) [6]. One of the essential ingredients of this ap-
proximation is the requirement that each of the laser fields
interacts only with one pair of levels, either because the
difference of the transitions frequencies is sufficiently large
or because optical selection rules (often related to laser po-
larization [7]) prevent additional couplings. In such cases
the time evolution is dominated by two single-photon res-
onances, each associated with the exchange of a single
photon between the laser fields and the atom or molecule.

In this article we generalize the well-known process of
population transfer by stimulated Raman adiabatic pas-
sage (STIRAP [3]) to conditions beyond the validity of
the RWA. The basic STIRAP process produces complete
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Fig. 1. Diagram of link-
age patterns between three
atomic states (full horizontal
lines), showing pump (P) and
Stokes (S) transitions.

population transfer by means of two suitably delayed laser
pulses: a pump pulse with carrier frequency ωP which cou-
ples the initial state |1〉 and an intermediate state |2〉, and
a Stokes pulse with frequency ωS which couples the inter-
mediate state to a final, target state |3〉, as diagrammed in
Figure 1. For STIRAP, the pulses are applied in counter-
intuitive order: the Stokes pulse precedes the pump pulse.
Complete population transfer from state |1〉 to state |3〉
is accompanied by the loss of a pump-field photon and
the gain of a Stokes-field photon. We consider cases when
the Rabi frequencies, although kept much smaller than the
transition frequencies ωP and ωS, as in the RWA, are com-
parable to or larger than the difference of the transition
frequencies. No longer is there a clear identification of a
particular pulse with a specific transition. Nevertheless, it
is possible to achieve complete population transfer even
under these conditions. We will see that multiple photon
exchange becomes the mechanism of population transfer.
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Several extensions of the conventional STIRAP theory
beyond the RWA have been presented previously. The ex-
tensions include a discussion of population dynamics when
the largest Rabi frequency approaches the difference of
the transition frequencies [8], when the envelope of the
laser pulses is not smooth but is modulated periodically
[9] or when – in the extreme case – the Rabi frequency
approaches the transition frequency [10].

The present work demonstrates that complete pop-
ulation transfer can result from pulse sequences that
do not satisfy the usual conditions for counterintuitive
pulses; in particular, both pulses act simultaneously on
each transition. We show that in this regime the process
is accompanied by degeneracies (or near-degeneracies) of
dressed-state energies. These near-degeneracies have been
previously observed for STIRAP with levels near the in-
termediate and final states [11,12] and for multiphoton
(2 + 1) STIRAP [10,13,14]. Such population transfer ex-
hibits interesting effects of multiple-photon absorption
from, or emission into, the laser fields. However, unlike
the usual STIRAP, the transient population of the inter-
mediate state is not negligible during the process. We ex-
amine the specific conditions leading to a robust popula-
tion transfer, subjected to the approximation of a weakly
lossy intermediate state. The extended regime for effective
population transfer may apply when population transfer
takes place between hyperfine states in atoms (see one
example in [15]) or between states in groups of closely
spaced levels in polyatomic molecules [16]. Alternatively,
it becomes relevant when population transfer occurs in
sufficiently strong laser fields, in the sense that the Rabi
frequency approaches the space of the initial and final lev-
els. (For example, this would require a peak field of order
of 1015 W/cm2 in a typical pulsed STIRAP experiment in
NO [17].)

2 The Hamiltonian

The full Hamiltonian for the process reads

H(t) = H0 + d·E(t) (1)

whereH0 is the Hamiltonian of the free three-level system,
d the dipole moment operator (coupling transitions 1–2
and 2–3, but not 1–3) and E(t) the total electric field,
expressed as

E(t) = eSES(t) cosωSt+ ePEP(t) cosωPt, (2)

and characterized by unit vectors ej and real-valued func-
tions of time Ej(t). The solution statevector Ψ(t) of the
system satisfies the time-dependent Schrödinger equation
and the initial condition |Ψ(−∞)〉 = |1〉.

To parameterize the Hamiltonian matrix we intro-
duce the usual time-dependent Rabi frequencies ~ΩP(t) =
−〈1|d · eP|2〉EP(t) and ~ΩS(t) = −〈2|d · eS|3〉ES(t). We
parameterize the ratio of the dipole moments as

γ ≡ 〈1|d · eP|2〉/〈2|d · eP|3〉 = 〈1|d · eS|2〉/〈2|d · eS|3〉.
(3)

Another relevant parameter is the maximum Rabi fre-
quency (maximized over time)

Ωmax = max
t
{|ΩP(t)|, |γΩS(t)|, |ΩP(t)/γ|, |ΩS(t)|}. (4)

We consider, as is commonly done, the situation where
the pump frequency ωP is resonant with the 1–2 transi-
tion, and the Stokes frequency is resonant with the 2–3
transition,

~ωP = E2 −E1, ~ωS = E2 −E3 (5)

so that the pump-Stokes combination maintains the two-
photon Raman resonance between initial state |1〉 and tar-
get state |3〉. A significant frequency is the beat frequency

δ ≡ ωP − ωS = (E3 −E1)/~. (6)

We are interested in the transfer process when

|δ| . Ωmax. (7)

As is customary, we reduce the Schrödinger equation to
three coupled ordinary differential equations and we elimi-
nate the carrier frequencies by introducing the three-state
rotating wave transformation [6],

Ψ(t) = |1〉C1(t) + |2〉C2(t) exp[−iωPt]
+ |3〉C3(t) exp[−i(ωP − ωS)t]. (8)

As with the RWA, we neglect terms that vary as sum
frequencies. However, unlike the usual RWA, we retain
terms that vary as the difference frequency δ. And, unlike
the usual RWA, we do not assume that each of the two
transitions is affected uniquely by a single pulse: we permit
both pulses to act upon both transitions. In this sense,
there is ambiguity of the couplings.

The resulting Hamiltonian ~W(t), for use with the
equations

i
d
dt

C(t) = W(t)C(t) (9)

has some elements that vary only with the pulse envelopes
whereas other elements are modulated with the difference
frequency δ

see equation (10) below.

W(t) =
1
2

 0 ΩP(t) + γΩS(t)e−iδt 0
ΩP(t) + γΩS(t)e+iδt 0 ΩS(t) + [ΩP(t)/γ] e−iδt

0 ΩS(t) + [ΩP(t)/γ] e+iδt 0

 (10)
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Fig. 2. Population histories Pn(t) for n = 1, 2, 3, with δ = 2Ω0,
γ = 1, for (a) Ωmax = Ω0 (top frame), (c) Ωmax = 4.4Ω0

(bottom frame), and excitation by squared trig function pulse
envelopes (of length T = 100/Ω0 and delay 0.33T ) with pump
(dashed line) before Stokes (full line) shown in middle frame
(b). Population transfer P3(∞) to state |3〉 is nearly complete.

As is commonly done, we have assumed that spontaneous
emission from the intermediate state |2〉 is negligibly small
on the time scale of the pulse duration.

In the limit δ → 0, both transitions are driven by the
same real-valued pulse. As with π-pulse processes, the de-
gree of population exhibits an oscillatory dependence on
the pulse area; it does not have the robust independence
of pulse area which characterizes STIRAP.

When the beat frequency δ is much larger than ei-
ther Rabi frequency, then one can drop terms involving
exp[±iδ], and the Hamiltonian reduces to the usual RWA
description of STIRAP. Our interest here is in the alter-
ation of the population dynamics when δ is not sufficiently
large, and these terms must be retained.

3 Numerical results

In this section we present results obtained by numeri-
cally solving the time dependent Schrödinger equation (9),
using the non-RWA Hamiltonian given in equation (10).
These reveal some of the characteristic features of the in-
fluences of interaction parameters upon population dy-
namics. To ensure the interactions have a finite duration

we use pulses based on the truncated sin2 envelope,

f(t) =

{
sin2(πt/T ) 0 < t < T,

0 otherwise.
(11)

Time and frequency are scaled to a Rabi frequency Ω0. In
this paper we set the scaled pulse length to T = 100/Ω0.
Thus, if the relevant Rabi frequencies Ω are sufficiently
large to satisfy Ω/Ω0 > 0.1, the standard STIRAP condi-
tion for adiabatic evolution [3] is fulfilled. As with conven-
tional STIRAP, we look for conditions which will produce
complete population transfer into target state |3〉. For sim-
plicity we take the two pulses to have equal peak values,
and γ = 1. Thus for fixed pulse delay the computations
presented here involve only two parameters, the peak Rabi
frequency Ωmax and the beat frequency δ.

3.1 Evolution of the population

Figure 2 shows two examples of successful population
transfer. The upper and lower frames of Figure 2 show
the time varying populations of the three atomic states
for two choices of peak Rabi frequency, Ωmax = Ω0 and
4.4Ω0, respectively. The middle frame shows the pulses,
of the form (11), used for the calculation (parameters are
given in the caption). With these parameters of the pulses
the standard condition [3] for adiabatic evolution is ful-
filled.

For Ωmax = Ω0 (upper frame), the peak Rabi fre-
quency is smaller than δ. This situation is similar to stan-
dard STIRAP, and complete population transfer occurs.
Because we have not applied the usual RWA, the evolution
Pn(t) is not smooth. The oscillations are a first correction
of the usual RWA-based STIRAP, as studied in [8].

For Ωmax = 4.4Ω0 (lower frame), the peak Rabi fre-
quency is larger than the difference of the transition fre-
quencies, and so the conditions for conventional STIRAP
do not apply. Nevertheless, complete population transfer
occurs. However, although conditions fulfill the usual adia-
baticity criterion of STIRAP, unlike STIRAP there occurs
substantial transient population in the intermediate state
|2〉. Furthermore, the amplitude of the oscillations of Pn(t)
are substantially larger than for Ωmax = Ω0.

As these examples show, it is possible to achieve good
population transfer even though the effective Hamiltonian
embodies modulations that one might expect to hinder
such transfer, and although the pulses are not uniquely
interacting with a single transition. It is natural to ask
whether such transfer is robust to small changes of Rabi
frequency, as is traditional STIRAP, or whether the trans-
fer exhibits the periodic dependence on pulse area char-
acteristic of multiple-π pulses.

3.2 Dependence on Rabi frequency and detuning

The answer to the question posed at the end of the pre-
vious paragraph is found by inspection of Figure 3, which
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Fig. 3. Contour map of population transfer efficiency P3(∞)
for varying difference frequency δ and varying peak Rabi fre-
quency Ωmax (the other parameters are the same as in Fig. 2).
The crosses (all along the line δ = 2Ω0) labelled (a) (Ωmax =
Ω0) and (c) (Ωmax = 4.4Ω0) refer to the parameters of the
simulations of Figures 2a and 2c, respectively. The crosses
also refer to the parameters relevant for Figures 6a and 6b
(Ωmax = 3.2Ω0), 6c and 6d (Ωmax = 7.4Ω0), respectively.

shows the variation of the transfer efficiency P3(∞) with
δ and Ωmax.

The lower horizontal portion of the figure shows a com-
plicated partially-regular pattern with isolated regions of
high (white) and low (black) transfer efficiency. The up-
per portion, on the other hand, shows a more regular pat-
tern: a succession of ridges of high transfer efficiency and
valleys of low transfer efficiency. The ridges and valleys
extend radially from the origin. The two crosses (a) and
(c) identify the combination of parameters used for the
calculations shown in Figure 2.

The white ridge adjacent to the vertical axis marks the
region of the standard STIRAP process (δ � Ωmax). The
well-known robustness of the STIRAP transfer efficiency
with respect to a variation of the Rabi frequency is seen
here as white region which grows wider as δ increases.
The STIRAP population transfer is observed, wherever
the peak Rabi frequency is large enough to satisfy the adi-
abatic criterion (see also left part of Fig. 4). In addition
to this region of high transfer efficiency, there is a succes-
sion of regions of equally high efficiency, with successively
narrower widths (and hence successively less robustness).
Unlike the standard STIRAP ridge, the high population
transfer of these additional ridges is accompanied by sub-
stantial transient population in the intermediate level (see
also the lower frame of Fig. 2) which decreases for larger
peak Rabi frequency Ωmax.
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Fig. 4. Maximum instantaneous population in state |2〉 during
the pulses, Ptrans, as a function of peak Rabi frequency and δ.

3.3 Transient population in the intermediate level

The standard STIRAP procedure accomplishes nearly
complete population transfer while placing negligible pop-
ulation into the intermediate state |2〉. This property is
useful to avoid population loss through spontaneous emis-
sion from that state. To show how an increase of Rabi fre-
quency affects this population, Figure 4 shows the value
of the maximum transient population in state |2〉, Ptrans,
as a function of δ and the peak Rabi frequency.

We recognize the dark nearly-vertical valley (black),
coincident with the ridge (white) of Figure 2 where stan-
dard STIRAP takes place. We also note here the same
pattern of radial ridges and valleys as in Figure 2; there
are regimes in which nearly all population resides momen-
tarily in state |2〉. Except in the STIRAP region, no struc-
tures appear clearly on this diagram, which would allow
low transient population (say less than 30%) of the inter-
mediate state with high transfer.

3.4 Changing the degree of coupling ambiguity

When γ deviates from unity, the symmetry of the cou-
plings is broken and population transfer is less efficient.
As an example, Figure 5 shows the variation of the slope
and the width of the ridges (white, high transfer) and the
valleys (dark, low transfer) for γ = 0.8, as compared to
γ = 1. The structure adjacent to the STIRAP zone almost
disappears for γ = 0.7 (not shown).
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Fig. 5. Contour map of population transfer efficiency P3(∞)
for γ = 0.8 (the other parameters are the same as in Fig. 2).

4 Interpretation using adiabatic Floquet
theory

In this section we use adiabatic Floquet theory to offer
an explanation for the patterns of high and low transfer
efficiency presented above. The mean carrier frequencies
have already been removed from the Hamiltonian (10). If
we disregard the slow variation of the pulse envelopes we
are left with a Hamiltonian whose elements vary period-
ically with the frequency δ – conditions which allow the
use of Floquet theory and assure that we can express the
statevector as a linear combination of the eigenstates of
the Floquet Hamiltonian [18–20].

In the processes to be discussed here, the amplitudes
of the laser fields are not constant. Therefore we are not
dealing with a strictly periodic Hamiltonian. Nevertheless,
the essential physics can be discussed based on the Floquet
approach.

When the interaction energies (the Rabi frequencies)
are negligibly small, and the carrier frequencies are tuned
to resonance with their respective transition frequency (as
we assume), the spectrum of the Floquet Hamiltonian
consists of a ladder of equally-spaced triply-degenerate
eigenvalues. The spacing is given by the characteristic fre-
quency, which is here δ. The degeneracy is removed during
the course of the interaction, whenever the Rabi frequen-
cies are non-zero. The related eigenstates are characterized
by |n;nP, nS〉, where n = 1, 2 or 3 identifies the atomic
state and nP or nS are the incremental photon numbers in
the pump or Stokes radiation field, respectively. The ref-
erence state |1; 0, 0〉 describes the system with the atom in
its ground state |1〉 before photons are absorbed or emit-
ted. After a standard STIRAP process, with absorption
of one photon from the pump field and emission of one
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Fig. 6. Four frames of Floquet eigenvalues with δ = 2Ω0, γ =
1, for (a) Ωmax = Ω0, (b) Ωmax = 3.2Ω0, (c) Ωmax = 4.4Ω0,
and (d) Ωmax = 7.4Ω0. Other conditions are as in Figure 2.
The parameters used to calculate the curves are marked in
Figure 3. Vertical lines indicate where respectively (from left
to right) pump starts and Stokes ends.

photon into the Stokes field, the system is described by
|3;−1,+1〉. The eigenstates whose energies border the en-
ergy of the state |1; 0, 0〉 are |1;N,−N〉, with N a negative
or positive integer. If δ and N are positive, then the energy
of state |1;N,−N〉 lies above that of state |1; 0, 0〉.

Figure 6 presents examples of the time-dependent adi-
abatic Floquet eigenvalues (or quasienergies) for four val-
ues of the peak Rabi frequency. In each frame a pair of
vertical lines bound the time interval when both pulses
are present: to the left of the lines only the Stokes pulse
acts, to the right only the pump pulse is present.

At very early and very late times, when all Rabi fre-
quencies are negligibly small, the energies of the groups
of triply degenerate states are well-separated (by a posi-
tive or negative integer number of increments of the fre-
quency δ). At intermediate times, the degeneracy is re-
moved and the separation between the lowest eigenvalue
of a given triplet and the highest eigenvalue of the neigh-
boring lower triplet is reduced. In frame (a), the triplet of
Floquet eigenvalues always form a distinct set. In subse-
quent frames Floquet manifolds overlap.

The system starts in state |1; 0, 0〉. We define the trans-
fer state to be the particular eigenstate of the adiabatic
Floquet Hamiltonian which evolves from this state. The
population resides in the transfer state [21,22,14]. The
evolution of the eigenenergies of this state is shown in
Figure 6 as a thick line.

As the energy evolves, the transfer-state eigenvalue
may reach regions of avoided crossings. Adiabatic passage
through such a region is one key to the successfull com-
pletion of population transfer since it is associated with
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transitions between atomic basis states [21,22]. Thus when
the evolution is adiabatic the population remains in one
and only one Floquet eigenstate. Diabatic evolution of the
transfer state may occur through some real or sufficiently
weakly avoided crossings. During such diabatic evolution,
the transfer state jumps from one Floquet eigenstate to
another. As described in an example below, the key to suc-
cessfull population transfer is a combination of the overall
adiabatic evolution with some localized diabatic process.
This combination allows in specific conditions the transfer
state to connect the initial dressed state |1; 0, 0〉 with the
final atomic state combined with any number of photons
N such as |3;−N,N〉 [14,22].

Figure 6a gives an example of a standard STIRAP
process (the history shown in Fig. 2a) for transfer be-
tween state |1〉 and |3〉 with the exchange of one pho-
ton per radiation field, i.e. |1; 0, 0〉 −→ |3;−1, 1〉. The
population evolves along the path which stays close to
zero energy. The small deviation of the transfer path from
zero energy means that the intermediate-state population
remains small [10].

The path of the transfer-state eigenvalue for a larger
Rabi frequency is shown in Figure 6b, with parameters
which place the system in a location close to the bottom
of a valley (low transfer) of Figure 3. Here the energies
of neighboring groups of triplets cross. When this hap-
pens the dynamics is more complicated (and more inter-
esting). In the case shown, the transfer path follows, at
late times, the upper curve of the lower triplet. This im-
plies that adiabatic evolution is not into the final state |3〉
but into a superposition of initial and intermediate state:
(1/
√

2)(|1;−1, 1〉+ |2;−2, 1〉). Such a superposition state
is characteristic for the situation discussed here. When
δ � Ωmax, as in standard STIRAP, the absorption and
emission process brings the population into the target
state |3〉. However, when δ . Ωmax, the population may
also return to states |1〉 and |2〉.

To understand the dynamics we examine the time evo-
lution of the transfer-state eigenvalue at each instant. For
instance, we analyse the one of frame (b) of Figure 6. First
it meets a crossing which is real (because only one laser
is acting). Next it encounters a crossing which is avoided
but very weak, because it occurs very close to the begin-
ning of the pump pulse when the coupling is weak between
the two states involved. The diabatic approximation can
be made here for both these crossings: the transfer-state
eigenvalue crosses them diabatically. (Because γ = 1 the
same argument applies equivalently near the end of the
process.) Next, between the beginning of the pump pulse
and the end of the Stokes laser (where no real crossing
are allowed), the transfer-state eigenvalue meets avoided
crossings. Since here the transfer-state eigenvalue connects
|1〉 with (1/

√
2)(|1;−1, 1〉+ |2;−2, 1〉), a robust superpo-

sition of states |1〉 and |2〉 is formed. The transfer fails.
Equivalent arguments about the occurrence of crossings
or avoided crossings apply for the other eigenvalues shown
in the other frames.

Frames (c) and (d) of Figure 6 show cases of successful
population transfer with successively larger values of peak

Rabi frequency. These represent, respectively, the trans-
fer of three and five photons with each radiation field
(i.e. transfer from |1; 0, 0〉 to |3;−3, 3〉 or |3;−5, 5〉, for
frames (c) or (d), respectively). Multiple photon up-down-
up processes have been discussed in two-level systems, for
instance, by Reuss and coworkers [23].

From the discussion above, and by inspection of Fig-
ures 3 and 6, it is apparent that there exist an infinite
sequence of ridges and valleys (Fig. 3), each associated
with parameters that maximize or minimize population
transfer from state |1〉 to state |3〉. The ridge closest to
the vertical axis identifies the standard STIRAP region.
In this region δ � Ωmax is valid and γ has few if any
consequences. Each radiation field exchanges one photon
with the atom or molecule. Along the neighboring ridges
population transfer from |1〉 to |3〉 involves the exchange
of 3, 5, . . . 2N + 1 . . . photons (of each field), leading to
states which are to be characterized as |3;−1−2N, 1+2N〉
(with N a positive integer). The occurrence of these pho-
ton numbers can be qualitatively understood by consider-
ing the three-state system as two independent two-state
systems: for moderate intensities two-state systems can
absorb or emit only odd number of one-photon resonant
photons [18].

The transient population in the intermediate state |2〉
is only small in the region of the first ridge. When the
parameters place to system in one of the valley-regions
(Fig. 3), the system remains in a superposition state
characterized as (|1;−(2N + 1), 2N + 1〉+ |2;−2(1 +N),
2N + 1〉)/

√
2.

5 Conclusions

We have examined the process of stimulated Raman adi-
abatic passage (STIRAP) for the case that a peak Rabi
frequency is larger than the difference between the two
carrier frequencies, so that both radiation fields can inter-
act with each transition dipole moment – the one between
the initial and the intermediate state as well as the one
between the intermediate and final state. We have shown
that complete robust population transfer is possible under
certain conditions with the exchange of one or more (odd
number) of photons between each radiation field and the
atom or molecules. When the transfer process is associated
with the exchange of more than one photon per radiation
field, the transient population of the intermediate level
is no longer negligibly small, even when the evolution is
adiabatic.

Observation of the transfer scenarios discussed here is
not restricted to the use of high power lasers. Since the
relevant parameter is δ/Ω, any system with nearly de-
generate states could be used as an example. The energy
separation of the states could, for instance, be controlled
by a magnetic field, as was already done in connection
with the STIRAP process implemented for Ne∗ atoms in
their metastable states [7,12]. Helium is a particularly in-
teresting system, because of its relatively long lived ex-
cited states, which can be reached from the (intermediate)
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metastable state 3S1 by radiation in the near infrared, vis-
ible or ultraviolet region of the spectrum. Some interesting
consequences of the multiphoton transfer process to mo-
mentum transfer and the deflection of particles will be the
subject of a related publication [24].
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20. S. Guérin, F. Monti, J.M. Dupont, H.R. Jauslin, J. Phys.

A 30, 7193 (1997).
21. H.P. Breuer, M. Holthaus, Phys. Lett. A 140, 507 (1989);

M. Holthaus, Phys. Rev. Lett. 69, 1596 (1992); S. Guérin,
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